Access Flow Monitoring Is Worthwhile and Valuable

A vascular access is a hemodialysis patient’s link to life. It is also the Achilles heel of hemodialysis, for the consequences of a thrombosed or failing vascular access are dire. In order for hemodialysis to continue, the access must be either repaired, another created, or have a central venous catheter introduced to deliver dialysis.

Transonic ultrasound dilution technology has revolutionized vascular access patency management by enabling routine monitoring to detect decreasing access flows that presage access thrombosis failure. An impressive body of evidence, with more than 75 scientific peer-reviewed publications, supports the value of trending vascular access flow to detect clinically significant stenoses and prevent thromboses. The National Kidney Foundation’s Kidney Dialysis Outcomes Quality Initiative (KDOQI) Guidelines, European Guidelines and Australian CARI Guidelines for Vascular Access all have included guidance that addresses access trending.

Nevertheless, access trending detractors continue to challenge its value. They cite over and over again a few clinical trials that indicate that prevention of thrombosis through access trending and prophylactic intervention ultimately does not prolong the life of an access. These studies must be viewed within the context of the entire body of vascular access literature that concludes that access monitoring is valuable and worthwhile for the clinic, the nephrologist, the healthcare system and, most important, the patient who will experience less morbidity and fewer emergent thrombolytic events. The body of scientific literature reporting routine vascular access trending to predict the onset of stenosis in the vascular access of ESRD patients includes the following supportive studies that attest to the value of vascular access trending coupled with early intervention to reduce the thrombosis rate in both fistulas and grafts:

Aragoncillo Study

In a three-year follow-up randomized, controlled, multicenter trial of 207 patients that compared QA-based surveillance and preemptive repair of subclinical stenosis with standard monitoring techniques in prevalent mature AVFs, clinicians observed:

- A significant reduction in the thrombosis rate in the flow monitoring group versus the control group.
- A significant improvement in the thrombosis-free patency rate and in the secondary patency rate in the flow group, with no differences in the primary patency rate between the groups.
- A greater need for a central venous catheter and more hospitalizations associated with vascular access in the control group than in the flow monitoring group.
- Total vascular access-related costs were higher in the control group.

The study concludes, “QA-based surveillance combining Doppler ultrasound and ultrasound dilution reduces the frequency of thrombosis, is cost effective, and improves thrombosis free and secondary patency in autologous AVFs.”

Tessitore Study

Dr. Tessitore’s 2008 study in Nephrology Dialysis and Transplantation, “Adding access blood flow trending to clinical monitoring reduces thrombosis rates and costs, and improves fistula patency in the short term: a controlled cohort study” concludes, “Our 5-year controlled cohort study shows that adding QA trending to monitoring in mature AVFs is associated with a better detection and elective treatment of stenosis, and lower thrombosis rates and access-related costs, although the cumulative access patency was only extended in the first 3 years after fistula maturation.”

Wijnen Study

Dr. Wijnen reports in his study “Impact of a quality improvement programme based on vascular access flow monitoring on costs, access occlusion and access failure,” that: “A quality improvement programme based on periodical access flow measurement reduced the number of acute vascular access failures due to thrombotic events and also significantly reduced health care costs in patients with AVG, but not in patients with AVF.”

McCarley Study

The Aragoncillo, Tessitore and Wijnen studies support the findings of the landmark 2001 Vanderbilt study published in Kidney International “Vascular Access Blood Flow Monitoring Reduces Access Morbidity and Costs,” that concluded that vascular access blood flow measurement (VABFM) for early detection of vascular access malfunction coupled with preventive intervention reduces thrombosis rates in both polytetrafluoroethylene grafts and native AVFs.

While there was a significant increase in the number of angioplasties performed during the flow monitoring phase, the comprehensive cost was markedly reduced due to the decreased number of hospitalizations, catheters placed, missed treatments, and surgical interventions. Vascular access blood flow monitoring along with preventive interventions should be the standard of care in chronic hemodialysis patients.” McCarley et al showed a reduction in overall costs for access-related morbidity of approximately 50% with flow trending and early intervention policies coupled with a reduction in thrombosis rates of 4.5 fold in AV grafts and 2-fold in AV fistulas.
Vascular Access Monitoring

Chang Study
This huge (40,132) observational matched cohort analysis studied the effectiveness of elective access angiography and percutaneous transluminal angioplasty (PTA) among Medicare beneficiaries receiving hemodialysis with a fistula or graft. Cox regression was used to determine whether access intervention was associated with improved 1-year access survival. They found:
- Nonsurgical access intervention was performed at a rate of 20.9 procedures per 100 access years (fistulas and grafts). In the 1-year period after intervention using angiography and PTA, the overall access failure rate was 53.7 per 100 access years in the intervention group and 49.6 in the nonintervention group.
- In patients with a low intra-access flow rate or a new access, angiography and PTA significantly increased access survival when compared with nonintervention.
- Angiography-PTA-related upper-extremity hematoma, vessel injury, or embolism-thrombosis occurred in 1.1% of all patients. They concluded that, “PTA intervention is most beneficial where seen in newer accesses or accesses with insufficient flow.” Note, flow reduction was the one parameter named that determined PA success.

Studies That Challenge Vascular Access Monitoring
Reports that have challenged the value of vascular access monitoring include two papers that attest to the success of flow monitoring in predicting stenosis even though the results of the subsequent PTA interventions were disappointing. Others that have arrived at similar conclusions have not rigorously followed the 2006 KDOQI Guidelines in their access protocols.

Why Should We Bother with Access Flow Monitoring?
One must keep in mind that a few skeptical studies from a few select centers do not represent the definitive answer, but are part of an on-going conversation in the nephrology community on the value of vascular access monitoring. Several have review the literature on the subject. They include the following:

Besarab Review

At the outset the authors state, “Adequate vascular access function is the most important determinant in the success or failure of hemodialytic therapy. Low blood flow rates and loss of patency limit dialysis delivery, extend treatment times and result in underdialysis leading to increased morbidity and mortality.”

Citing 86 references in their critique, they unequivocally conclude: “Most of the available evidence suggests that detection of stenosis and prevention of thrombosis in AV fistulas is valuable.” They assert that a reduction in thrombotic events in patients who have undergone trending is a worthy goal of trending and reduces patient morbidity. The review defines:
- The scope of the problem in maintaining patency
- The difference between clinical “monitoring” by physical examination and “trending” by methods such as pressure monitoring, indicator dilution, Duplex ultrasound.
- When a test indicates the presence of a functionally signifi-
cant stenosis, venography of fistulography should be performed to definitely establish the presence and degree of the stenosis.
- In most cases, angioplasty should be performed if the stenosis is greater than 50% by diameter.
- Stenotic lesions should not be repaired simply because they are present.

The review concludes that most of the available evidence suggests that detection of stenosis and prevention of thrombosis in AV fistulas is valuable.

Garland Review
Dr. Garland reviewed the available evidence in her 2002 report “Are hemodialysis access flow measurements by ultrasound dilution the standard of care for access surveillance?” published in Advances in Renal Replacement Therapy and suggested, “that access flow measurements are the best tests currently available to screen for access dysfunction, and as preventative interventions, such as angioplasty and surgery, are successful, they should be regarded as the present standard of care. This would appear to be a cost-effective strategy. Furthermore, the method of choice for access flow measurement is by ultrasound dilution technology.”

Tonelli Review
Dr. Tonelli’s 2008 review of the literature “Ultrasound Monitoring to Detect Access Stenosis in Hemodialysis Patients: A Systematic Review,” published in the American Journal of Kidney Disease also sought to clarify the conflicting conclusions of various randomized trials. They examined 12 randomized controlled trials, including four fistula studies, from a total of 1,613 citations and abstracts. These included 69 full articles using access flow or ultrasound screening. A total of 1,164 patients of various access types were analyzed, 141 with fistulas. Tonelli’s group reported that:
- Access type was significantly associated with risk of thrombosis
- In fistula studies, access monitoring deceased risk of thrombosis, but not fistula loss.
- In graft studies, access monitoring did not reduce risk of thrombosis, or access loss.

Their analysis indicated that access monitoring does reduce thrombosis in fistula patients, but may not reduce fistula loss or extent of resource use (cost and hospitalizations).

2019 KDOQI Guidelines for Monitoring AV Grafts and Fistulas
The 2019 KDOQI Vascular Access Guidelines call for an “End-Stage Kidney Disease Life-Plan” (an individualized and comprehensive map for dialysis modalities and vascular access for the lifetime of the patient).
- Primary in the Life Plan is to have a regular physical examination or check of an AVF or AVG in every patient by an experienced health practitioner in order to detect clinical indicators of flow dysfunction in the AVF or AVG.
- If clinical indicators of flow dysfunction present, they can be corroborated and quantified in true mL/min to remove any reasonable doubt by Transonic HD03 flow monitoring and trending of vascular access flow data.
Worthwhile and Valuable

However, the authors caution that the overall quality of the trials they analyzed was "poor to moderate." Secondly, they sound the clarion call for properly conducted clinical studies to determine the optimal means to do access trending and advise that studies be separated by access type and advise that a trial of 850 fistula patients (rather than the 141 total used in this study) would be required for an adequate study.

Valliant Review

In their 2015 review, "Vascular Access Monitoring and Surveillance: An Update," from the Division of Nephrology, University of Wisconsin Hospitals and Clinics, Madison, WI, Valliant et al stated, "Access surveillance is increasingly important to preserve vascular access in our patients. Having another data point can help guide decision making regarding care and referral of these patients at risk for significant access dysfunction, particularly when staff are not comfortable with their ability to reliably predict access dysfunction based on physical examination alone."

Krivitski Review

In 2007, Krivitski presented his analysis of current vascular access literature at the European Dialysis and Transplant Association. In "Access Flow Surveillance - Major Criteria for Success," Krivitski defines three major influences on trending outcomes. They are:

1) Technology used for routine trending (access flow, intra access pressure);
2) Guidelines for referring patient for fistulography or PTA;
3) Outcome of PTA invention to improve access flow.

All 26 flow publications suggest that, if a patient is referred for fistulography based on small blood flow or decreased blood flow, a hemodynamically significant stenosis (greater than 50% stenosis) exists in these vascular accesses with a positive predictive value of 92-100%. He points out that, "while all agree that there is always a high prevalence of a 50% stenosis in both grafts and fistulas, the actual definition of a hemodynamically significant stenosis is, in fact, a decrease in blood flow."

The review concludes that the main reasons for unsuccessful trending outcomes in some randomized trials were:

1) failure to use two flow thresholds to predict hemodynamically significant stenoses; when one static threshold is used, a thrombotic event can be missed.
2) failure of PTA invention to improve access flow.

Summary

The value of vascular access trending has and continues to ignite a spirited debate in the nephrology community - one that is essential to the process of scientific discovery that ultimately produces improvements in diagnostic care. At this time, there is robust scientific evidence that supports vascular access trending with Transonic access flow measurements being the reference Gold Standard.

As more randomized controlled trials, such as Aragocillo’s, are conducted and their findings published that confirm the clear benefits of vascular access management through both physical examination supplemented by flow trending, it is hoped that vascular access monitoring will be universally accepted as valuable and worthwhile by the dialysis community.

Why Prevention of Fistula Thrombosis through Access Monitoring Is Worthwhile?

A thrombosed vascular access is problematic for:

Dialysis Staff who need to:
- Assist patient in coping
- Arrange for transportation
- Interface between patient and physicians
- Rearrange dialysis schedule

Nephrologist who needs to:
- Console unhappy patient & family
- Arrange logistics to resolve AVF failure

Patient who copes with:
- Discomfort, pain, anxiety and fear
- Delay of dialysis
- Concerns about K+ and fluid
- Disruption to schedule
- Decreased quality of life

Flow-QC®: The Cornerstone of My Vascular Access Program

Lawrence M. Spergel, MD FACS

1. Measurement of True Delivered Blood Flow (Qb) vs. pump setting
 - Identify Qb disparity / avoid under-dialysis
 - If disparity is significant, provides method for identifying cause (blood pump calibration vs. inflow restriction/excessive pre-pump negative xarterial pressure)
2. Test Calibration of Blood Pump
3. Assessment of Access Function (AVF, AVG) / identify failing access (avoid underdialysis/thrombosis):
 - Access Flow (Qa); Access Recirculation; Value of absolute measurements and trend analysis (K/DOQI)
4. Assessment of Catheter Function: Delivered Blood Flow; Recirculation
5. Identification of patients with Non-anatomic vs. Anatomic Cause of Access Failure (i.e. hypotension, "hypercoagulable state," overzealous compression of cannulation sites)
6. Identification of Appropriate Blood Pump Setting for low flow access when it is not feasible to increase access flow (match blood pump setting/Qb with access flow to avoid recirculation/under-dialysis)
7. Immediate Exclusion of Access Dysfunction as cause of under-dialysis
8. Identification of inadvertent Reversal of Dialysis Lines (prevent recirculation/under dialysis)
9. Identification of Mid-access Obstruction
10. Identification of High-flow Accesses likely to cause high-output failure or limb ischemia (steal syndrome)
11. Evaluation of Options for Steal Syndrome
 - Identification of high-flow vs low flow accesses / permits selection of ideal treatment option (flow-restricting vs. re-vascularization procedure)
12. Assessment of Effectiveness of Interventions
13. Cardiac Output measurement to detect cardiac overload.
References

Transonic Systems Inc. is a global manufacturer of innovative biomedical measurement equipment. Founded in 1983, Transonic sells “gold standard” transit-time ultrasonic flowmeters and monitors for surgical, hemodialysis, pediatric critical care, perfusion, interventional radiology and research applications. In addition, Transonic provides pressure and pressure volume systems, laser Doppler flowmeters and telemetry systems.