Protocol: Intraoperative Bypass Graft Patency Assessment

Mean Flow Assessment Is Primary
Transonic’s CABG Flow Assessment Protocol is based, first and foremost, on mean graft flow. It is the primary consideration to confirm graft patency or to alert the surgeon to an undesirable condition.

Mean Flow Assessment Rules of Thumb are:

1. **Mean Flow ≥ 30 mL/min** (small patients, ≥20 mL/min) = Patent Graft: If mean flow is less than expected, first consider the presence of competitive flow.

2. **Mean Flow < 5 mL/min** = Graft in Trouble

3. **Medium Range Mean Flows (5 mL/min - 30 (or 20) mL/min)**: Analyze Graft Flow Waveforms, via D/S Ratio (or DF%) and PI. (Detailed protocol steps follow.)

Measuring Graft Flow
Accurate measurements are technique dependent (see sidebar on page 4)
- Select a Flowprobe sized so that the graft will fill at least 75% of the window of the Probe without compressing the graft.
- Fill Probe window with ultrasound gel.
- Position Probe on graft (not over metal clips or fascia).
- Occlude native coronary artery in order to assess graft at maximum graft flow.
- On AureFlo®, take snapshot or record when flow reading is stable (10-15 seconds).
- On Optima Flowmeter, press Print when flow reading is stable (10-15 seconds).

When Does Mean Flow Confirm Graft Patency?
Flows greater than 20mL/min for a small patient and 30 mL/min for a normal sized patient indicate a good graft. However, mean graft flow can vary over a wide range. It is influenced by, and should be evaluated with respect to:
- The size and quality of the graft;
- The size and quality of the target vessel;
- Mean arterial pressure (MAP);
- Rate of myocardial run-off.
If mean flow is lower than expected, the presence of competitive flow must be considered first.
Protocol: Intraoperative Graft Patency Assessment

Apply Flowprobe Per User Instructions — (If flow is negative, press INVERT button)

Measure Graft Flow
with native coronary artery temporarily occluded to test graft patency at maximum flow

Evaluate Mean Flow Reading

- Questionable or Poor Flow < 30 (or 20) mL/min
- Other Factors
 - Small patient/small target vessel?
 - Physiologic factors (MI, vasospasm, low MAP)?
 - Poor run-off?
 - Quality of myocardium?
 - Insufficient valvectomy?
 - Size and quality of the graft?

Examine, Correct Graft
(spasm/kinks/twists/low BP)

Remeasure Graft Flow
with native coronary artery occluded (mean flow reading & waveform printout). Use FlowSound® to explore whether graft manipulation rectifies low flow condition.

Reevaluate Mean Flow Reading

- Good Flow > 30 (or 20) mL/min
- Other Factors
 - Acceptable Flow Profile:
 - Diastolic Dominant (left ventricle)
 - Systolic/Diastolic balanced (right ventricle)

Patent Graft
Proceed to measure flow in next graft

Acceptable Flow Profile

Suspend Graft
Examine Graft for Anastomotic Error
Revise graft

Flow Waveform Analysis

- Acceptable Flow Profile:
 - Diastolic Dominant (left ventricle)
 - Systolic/Diastolic balanced (right ventricle)

Questionable or Poor Flow < 5 mL/min

Questionable Flow Profile

Analyze Other Factors

- Small patient/small target vessel?
- Physiologic factors (MI, vasospasm, low MAP)?
- Poor run-off?
- Quality of myocardium?
- Insufficient valvectomy?
- Size and quality of the graft?

This protocol and evaluation is intended only to assist in surgical decision-making and is not a diagnostic device. Surgical interpretation is required.
When Do Mean Flows Not Confirm Graft Patency

Flows below 5 mL/min indicate a problem graft that demands further investigation. When flows are questionable (between 5 mL/min and 20 mL/min to 30 mL/min depending on a patient’s size and physique), examine waveforms.

1. Flows < 5 mL/min, Graft Patency Is Suspect
 - With Probe on the graft, turn on FlowSound® and listen for the change in pitch (flow) as the area around the anastomosis is manipulated.
 - Look for kinks/twists in the graft, low MAP, flow with diminished pulsatility (dampened waveform).
 - Redo anastomosis if technical error is indicated.

2. Questionable Flows: Analyze Waveforms

If flow values fall in the medium range (more than 5 mL/min but less than 20-30 mL/min), flow waveform analysis of systolic/diastolic waveform properties can shed light on a possible problem. Waveforms should be first examined to see if they exhibit a repetitive flow pattern characteristic for the ventricle it is supplying (left ventricle: diastolic dominant pattern; right ventricle: systolic/diastolic balanced waveform).

3. Consider Other Factors: D/S Ratio (or DF%), PI When Mean Flow Is Inadequate

D/S Ratio and DF%

Transonic Surgical Flowmeters can use ECG or pressure signals to analyze and display D/S Ratio (or DF%) to represent the amount of blood flow passing through a bypass graft. A D/S Ratio (or DF%) compares diastolic flow to systolic flow
- D/S Ratio >2 (or DF% ≥67%): acceptable diastolic-dominant profile;
- D/S Ratio between 1 and 2 (or DF between 50% and 67%): indicates a diastolic-systolic balanced profile (acceptable for a right heart bypass).
- D/S Ratio <1 (or DF% <50%): a systolic dominant flow profile which signals the need for further examination of the graft.

Is Pulsatility Index (PI) between 1 & 5?

A PI greater than 5 or lower than 1 has been associated with low mean flow and systolic-dominant flow pattern indicating that the graft should be reexamined.

Diastolic-Dominant Pattern (L-Heart Grafts)

For grafts to the left ventricle, the shorter waveform peak is usually systolic, and the higher, broader peak is diastolic (Fig. 1) except in the presence of severe tachycardia where diastole is shortened. An acceptable left ventricular waveform is “diastolic dominant” where the delivered diastolic blood volume (i.e., area under diastolic curve) exceeds delivered systolic blood volume.

Balanced Systolic/Diastolic Pattern (R-Heart Grafts)

In grafts to the right ventricle, flow is more equally distributed between the systolic and diastolic phases. This produces a flow waveform where the systolic peak may dominate but is followed by a proportionally strong diastolic flow producing a systolic/diastolic balanced waveform (Fig. 2).

Stenotic Pattern

In stenotic grafts, mean flow is low or near zero and the systolic peak dominates the flow profile. Often, systolic charge flow runs backwards within the graft as a negative flow during diastole: the flow probe registers mostly or only the diameter (volume) changes of the graft segment between the probe and the coronary anastomosis.

Technique Is Critical
Measurement results are technique dependent. The following step-by-step procedure ensures accurate, reliable measurements.

1. If using an internal mammary artery graft, skeletonize a 1.5 cm segment of its distal end before performing the anastomosis. Vein grafts require no additional preparation.

2. Select a Flowprobe sized so that the graft will fill at least 75% of the window of the Flowprobe. Take care not to undersize the probe for the graft.

4. Apply sterile ultrasound couplant (Aquasonic 100, Surgi-Lube or similar) into the window of the Flowprobe.

5. Turn on FlowSound®. A low-pitch zero flow sound ("hum") indicates that the Probe is properly connected to the Flowmeter, and that there is adequate ultrasound signal coupling for a measurement.

6. Place the Flowprobe on the graft, bending its flexible neck as needed for perpendicular placement. Avoid stretching, compressing, or kinking the graft. Do not place the Flowprobe over surgical clips or sutures. The ultrasound's signal quality is indicated on the AureFlo® Monitor or the Flowmeter's front panel display.

7. Observe the contraction of the heart while listening to FlowSound. Listen for a strong diastolic flow component.

8. Occlude the native coronary artery upstream from the anastomosis. The pitch of FlowSound® (i.e., graft flow itself) will increase if there is competitive flow. Always test graft patency at maximum available graft flow!

9. Note, after 10 seconds, the average (mean) flow displayed on the AureFlo screen or the front panel of the Flowmeter.

10. When flow has stabilized (10 - 15 seconds), press PRINT on the Flowmeter to record the next 8 seconds of flow. Hold the probe steady on the graft until the printer stops. On AureFlo, tap SNAPSHOT or RECORD to document the previous 8 seconds of flow.