Technical Note

Detection of Low Pump Flow & Hemolysis Risk

Hemolysis can result from an obstruction in a dialysis blood line circuit\(^1\text{-}^6\). The Transonic® Flow-QC® Hemodialysis Monitor and Flow/dilution Sensor measure actual flow in the dialysis tubing and can therefore identify such reductions in flow to provide early warning of conditions that could lead to hemolysis.

In contrast, the setting on the dialyzer pump sets the revolutions-per-minute (“RPM”) of the pump, or the flow that the pump is trying to generate. Comparison of the Flow-QC® dialysis blood flow measurement with the pump setting provides a sensitive indication of any tubing obstructions. When flow is restricted, actual flow drops substantially below the pump setting.

This pump flow measurement is the initial check after a patient is connected to the Flow-QC® Monitor. Whenever there is any significant discrepancy between the Flow-QC® measurement and the pump setting a flow restriction in a faulty dialysis circuit should be suspected. When a flow restriction is identified or suspected in one patient, all dialysis stations should be checked for flow restriction using the Hemodialysis Pump Flow-Check Protocol outlined below for an early warning of adverse conditions that can cause hemolysis and/or under delivery of dialysis.

I. HEMODIALYSIS PUMP FLOW-CHECK PROTOCOL

A. MEASURE DELIVERED BLOOD (PUMP) FLOW.

After a 10-second settling period, with ultrafiltration turned off, verify that the flow indicated on the Flow-QC® Monitor corresponds to the dialysis pump setting.

B. IS THE PUMP FLOW READING ACCEPTABLE?

It is normal for the pump to somewhat over estimate blood flow. The pump’s brand, its calibration and tubing type all affect the pump’s RPM-to-flow conversion factor. The hemodialysis Pump Flow-Check Protocol scans for gross deviations. With practice, a trained Flow-QC® technician can judge a normal deviation from an abnormal one. Initially, the following guidelines are recommended:

20% Discrepancy Demands Immediate Attention: If a flow measurement is \(\geq 20\%\) below the pump’s setting (i.e., Flow-QC measurement, \(< 280\text{ mL/min}; \) pump setting, \(350\text{ mL/min}\)), proceed immediately with the Flow Restriction Investigation Steps under Section III because of the potentially serious consequences of hemolysis.

10 - 20% Discrepancy, Moderate Concern: A Transonic® flow measurement 10\% - 20\% less than the pump setting (i.e., Flow-QC measurement, \(280 - 315\text{ mL/min}; \) pump setting, \(350\text{ mL/min}\)) can result from moderate flow resistance in the dialysis circuit, small needle diameter, incorrect needle placement, minor kink in the dialysis tubing or an access flow restriction. The patient may become uremic if the condition persists for several dialysis sessions. The cause of the low flow should be identified and corrected using the complete Hemodialysis Adequacy Flow Study7 or the “Error Analysis Algorithm” of DOQI Guideline 12 of the Clinical Practice Guidelines for Dialysis Adequacy8.

10\%, Normal Flow Range: The Transonic® flow indication is within 10\% of the pump setting (i.e., Flow-QC measurement, \(\geq 315\text{ mL/min}; \) pump setting, \(350\text{ mL/min}\)). Such differences may well lie within the measurement tolerances of the two methods.
II. FLOW RESTRICTION INVESTIGATION

Flow-QC® indications are complemented by other immediate observations. Because of the serious consequences of hemolysis, we recommend the following:

a) Check pressure readings for any unusual signs. An unusual arterial pressure reading indicates a source of obstruction located between the arterial patient connection and the pump inlet. An unusual venous pressure reading indicates an obstruction after the dialysis filter and the venous patient return. When both pressure readings are normal, the obstruction may be located in the part of the dialysis circuit located between the two pressure chambers.

b) Visually check for kinking of the tubing between arterial drip chamber and pump. The tubing may have collapsed at the site where it enters the pump.

c) Check for ballooning of the tubing between pump, dialyzer and venous drip chamber, either visually or by manual compression of the tubing. Because flow will pulsate sharply with the release of each pump roller, an obstruction between pump and dialyzer may create a “hammering” flow sound.

d) Immediately reduce the dialyzer pump setting to a level where pump setting and Flow-QC® measurement agree to within 10%. Discontinue dialysis with current equipment if the two readings cannot be brought within 10%.

e) Alert the nephrologist to determine whether to proceed with an extended dialysis time to offset the lower pump flow setting, or to further examine the dialysis configuration to diagnose the cause(s) of flow obstruction.

f) Take a blood sample to screen for hemolysis.

FLOW RESTRICTIONS AND HEMOLYSIS

Although rare, manufacturing defects in the tubing may occur. Kinking of the arterial line can occur with any tubing. Such kinking causes hemolysis. Multiple hemolytic reactions may occur before the kink was detected, and the location of the kink may not cause a pressure alarm. These reports suggest that the flow restriction may easily go unrecognized. The incidence of hemolysis related to flow restriction could be higher than is clinically recognized.

REFERENCES

PUMP FLOW MONITORING USING THE TRANSONIC FLOW-QC® MONITOR