Publication Brief

Arteriovenous Fistula, Blood Flow, Cardiac Output, and Left Ventricle Load in Hemodialysis Patients

Charles University, Prague, Czech Republic

OBJECTIVE
To investigate an association between vascular access flow (QVA), cardiac output (CO), and load of left ventricle (LLV) using a simple physical model calculation based on real data, specifically in patients with high access blood flow arteriovenous fistula (AVF).

STUDY
• Group 1: 15 patients with high access blood flow (QVA >1,300 mL/min).
• Group 2: 40 unselected patients with access blood flow (QVA range 200-1,400 mL/min were added to evaluate association of LLV and QVA over a wider range of QVA magnitude.
• QVA, CO, and PR (Peripheral Resistance) were determined by ultrasound dilution technique (HD01) during the first hour of dialysis sessions.

RESULTS
• Differences in LLV, LLV_{AVF} (the part of the overall LLV used to run the flow QVA through the AVF), and LLV_{SYSTEMIC} (the flow through the entire remaining vascular system without the AVF) are highly statistically significant between Group 1 and Group 2. But when related to body surface area (BSA), only the LLV_{AVF}/BSA showed statistically significant difference between the two groups.
• Strong and nonlinear association between QVA and LLV_{AVF}.
• In Groups 1 and 2 taken together, significant correlation was found between QVA and LLV.
• Borderline level of statistical significance was seen between QVA and Cardiac Index (CI) in data from the two groups together.

STUDY’S CONCLUSIONS
• Vascular access blood flow values in normal range do not seem clinically important and should not significantly affect the heart.
• An AVF with very high QVA consumes disproportionally high part of the LLV and may thus have negative effect on myocardium in the long-term perspective.

TAKE HOME POINTS
• Prolonged high access flow (>1,600~2,000 mL/min) can stress the heart causing cardiomegaly (especially left ventricle hypertrophy) and heart failure.
• Transonic® Flow-QC® Cardiac Output Program automatically calculates Cardiac Index (CI) using a patient’s weight and height and identifies dramatic decrease in CI to a dangerous level which indicates potential cardiac problems, inappropriate dry weight estimation, and/or inadequate medication.

REFERENCE