Thermal Dilution Technology

HVT100 Endovascular Flowmeter Principle of Operation

Principle of Operation

The HVT100 Endovascular Flowmeter and ReoCath® Flow Catheter system (Fig. 2) uses classical dilution-based equations for flow measurements adapted to the unique hemodynamic conditions that exist within an arterio-venous (AV) access.

Intra-access blood flow measurements obtained using the HVT100 Endovascular Flowmeter are based upon the following equation:

\[Q = k \frac{(T_b - T_i)}{S} - 0.5 \frac{V}{t} \]

Where:
- \(Q \) = intra-access blood flow;
- \(k \) = a coefficient related to the thermal properties of blood, saline = 1.08
- \(T_b \) = temperature of the blood prior to injection;
- \(T_i \) = temperature of injected saline;
- \(V \) = volume of injected saline (10 mL);
- \(S \) = the area under the temperature-time dilution curve resulting from the mixing of blood and injected saline;
- \(t \) = width of the dilution curve at 50% height (Fig. 1).

The expression \((0.5V/t) \) is an average expected increase in blood flow due to the saline injection.

![Diagram of ADT1001 Antegrade and ADT1002 Retrograde Catheters](https://www.transonic.com)

The left ADT1001 antegrade catheter (6F, 35 cm length) inserts into an AV access in the same direction as access flow. After injected saline is released from the catheter, a dilution thermister, downstream at the catheter tip, measures the temperature of blood, diluted by the injected saline. The right ADT1002 retrograde catheter (6F, 48 cm length) is inserted into an AV access against the direction of access flow. After injected saline is released from the tip of the catheter, a proximal dilution thermister measures the temperature of the saline-diluted blood. Classic dilution equations are used to extrapolate blood flow in mL/min from the temperature changes between the saline measured by injection thermisters and the saline-diluted blood measured by the dilution thermisters.

US patents: 6,623,436; 6,746,408; 6,868,739; 6,986,744; 7,112,176; 7,121,150; 7,210,359; 7,275,447;

Thermal Dilution Technology (IR-604-tjn) RevC 2017