Examples of customized ESKD Life-Plans for vascular access with inclusion of Transonic HD03 measurements include the following: a pediatric patient, a young patient, an elderly patient, an acute start patient and a home dialysis patient.

Pediatric Patient: 6-yr-old Girl

<table>
<thead>
<tr>
<th>Description</th>
<th>ESRD Life-Plan Modality Choice</th>
<th>Dialysis Access</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital cause of kidney disease, CKD not yet on dialysis, family wants to be evaluated for living related donors, left handed</td>
<td>1. PD</td>
<td>1. PD catheter</td>
<td>* Follow closely, lifelong anticipated</td>
</tr>
<tr>
<td></td>
<td>2. Living donor transplant if donor is identified; however, if not, place on the transplant wait list</td>
<td>2. Transplant</td>
<td>* Flexibility required as Life-Plan may change</td>
</tr>
<tr>
<td></td>
<td>3. Hemodialysis</td>
<td>3. RC-AVF (right)</td>
<td>* Life-Plan must consider multiple modalities & optimize access</td>
</tr>
</tbody>
</table>

Transonic Measurement Clinical Application once RC-AVF is the active access:
- Routine clinical examination (look, listen, feel, arm elevation, and augmentation) should be used regularly as part of the pre-cannulation process.
- Transonic Access Flow measurements are intended to be utilized in conjunction with the clinical examination to detect/confirm indications of access dysfunction.

Young Patient: 28-year-old male

<table>
<thead>
<tr>
<th>Description</th>
<th>ESRD Life-Plan Modality Choice</th>
<th>Dialysis Access</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport syndrome with rapid CKD progression requiring dialysis initiation, multiple abdomen surgeries related to a trauma, R handed, plays guitar/drums in a band</td>
<td>1. HD outpatient</td>
<td>1. Lower arm endovascular AVF (left)</td>
<td>Endovascular AVF preferred to reduce steal syndrome risk or mega fistula to avoid impairment of his ability to play guitar or drums. Reduce physical disfigurement from a surgical AV access.</td>
</tr>
<tr>
<td></td>
<td>2. Evaluation for living related Tx or Tx waiting list</td>
<td>2. BC-AVF (left) if endovascular AVF fails</td>
<td>* Follow closely, lifelong anticipated</td>
</tr>
<tr>
<td></td>
<td>3. Return to HD if needed to return to dialysis post-transplant</td>
<td>3. Hemodialysis</td>
<td></td>
</tr>
</tbody>
</table>

Transonic Measurement Clinical Application:
- Routine clinical examination (look, listen, feel, arm elevation and augmentation) should be used regularly as part of the pre-cannulation process.
- Transonic Access Flow measurements can be used with a clinical examination to detect/confirm indications of access dysfunction.
- A potential for cardiac overload exists if the Access Flow is > 1600mL/min. Evaluate patient for signs and symptoms of high-output cardiac failure if Access Flow reaches the high range.
ESRD Life-Plans Supported by HD03 Measurements cont.

Elderly Patient
80-year-old female
Description
CDM, HTN, CHF, vision issues, CKD rapidly advancing with multiple hospitalizations, lives with her husband, active but does require the use of a walker, R handed
ESRD Life-Plan
1. Hemodialysis outpatient
2. Forearm early cannulation AVG
3. Secondary upper arm AVF
Comments
* Patient likely has a limited life expectancy
* Focus on AV access and limiting CVC dependency vs. preserving sites for future access

Transonic Measurement Clinical Application:
- Routine clinical examination (look, listen, feel, arm elevation, augmentation) should be used regularly as part of the pre-cannulation process.
- Transonic Access Flow measurements can be used with a clinical examination to detect/confirm indications of access dysfunction.
- A potential for cardiac overload exists if the Access Flow is > 1600mL/min. Evaluate patient for signs and symptoms of high-output cardiac failure if Access Flow reaches the high range.

Acute Start Patient:
45-year-old male crash-lands on HD
Description
Acute start with no prior treatment of CKD; Urgent placement of HD catheter for hemodialysis, lives alone and lacks family support, R handed
ESRD Life-Plan
1. Acute HD
2. HD outpatient
3. Evaluate for transplant and placement on the transplant waiting list
Dialysis Access
1. Tunnel Cuffed Catheter
2. RC-AVF (left)
3. Transplant while maintaining the vascular access if needed for return to hemodialysis
Comments
* Follow closely, lifelong anticipated
* Flexibility required as Life-Plan may change
* Life-Plan must consider multiple modalities and optimize dialysis access

Transonic Measurement Clinical Application:
- Utilize Delivered Flow and Recirculation as part of the hemodialysis catheter algorithm for “On The Spot” catheter adequacy check and adjustment of blood flow rate and or catheter connection configuration as needed. Utilize this in both the acute hospital setting and outpatient hemodialysis facility.
 Once the RC-AVF is created and being utilized as the dialysis access:
- The routine clinical examination (look, listen, feel, arm elevation, and augmentation) should be used regularly as part of the pre-cannulation process.
- The Transonic Access Flow measurements are intended to be utilized in conjunction with the clinical examination to detect/confirm indications of access dysfunction.

Home HD Patient:
55-year-old female
Description
On hemodialysis for 3 years including home HD for past 2 years. CKD caused by nephrotic chemotherapy drugs to treat previous colon cancer, R handed.
ESRD Life-Plan
1. Home Hemodialysis
2. Waiting to reach 5 plus years post cancer to be evaluated for a kidney transplant
3. RC-AVF
4. Revision of her current AVF if fails or move up the arm for new AVF
Dialysis Access
1. RC-AVF
2. Tunnel Cuffed Catheter
Comments
* Maximize the lifespan of her current RC-AVF
* Preserve R arm vessels above the current RC-AVF for any required revision or creation of a new AVF above the current RC location.

Transonic Measurement Clinical Application:
- Routine clinical examination (look, listen, feel, arm elevation and augmentation) should be used regularly as part of the pre-cannulation process.
- Transonic Access Flow measurements are intended to be utilized in conjunction with the clinical examination to detect/confirm indications of access dysfunction.
- A potential for cardiac overload exists if the Access Flow is > 1600mL/min. Evaluate patient for signs and symptoms of high-output cardiac failure if Access Flow reaches the high range.