The ELSA — Transonic’s Extracorporeal Life Support Assurance Monitor Optimizes ECMO Therapy & Safeguards A Hospital’s ECMO Program

To Measure is to Know!

For the past 35 years Transonic has been providing the world’s most precise measurement solutions for medicine and research.

Hand in hand with the evolution of extracorporeal membrane oxygenation (ECMO) has been Transonic’s development of Flowsensors that clamp on sterile tubing to measure the volume flow inside the tubing.

The first Transonic Tubing Flowsensors were introduced in 1987. Continuous improvements in the sensors has expanded their measurement capability so that now the 300–500 mL/min low flows typical in ECMO circuits can now be accurately measured.

“The ELSA monitor provides an easy to use, non-invasive method to measure recirculation in VV ECMO without blood sampling.”

Optimize ECMO Delivery

What Does the ELSA Monitor Do?

The Transonic® ELSA Monitor is a state-of-the-art instrument that is used to optimize and safeguard extracorporeal membrane oxygenation (ECMO) therapy in infants, children and adults.

It uses two gold standard technologies (transit-time ultrasound & ultrasound flow/dilution) to:
- Measure true blood flow in ECMO circuits;
- Quantify recirculation in the ECMO circuit;
- Detect oxygenator clotting.

The ELSA Verifies Delivered Blood Flow

Pump or delivered blood flow errors and recirculation compromise the delivery of oxygenated blood to the fragile patient.

The Transonic® ELSA Monitor measures true delivered blood flow through ECMO tubing using “gold standard” transit-time ultrasound technology. When this actual delivered blood flow is compared to the flow reading on the pump, flow limiting causes such as incorrect cannula placement can be identified and corrected on the spot.

The ELSA Helps Optimize the Placement of Cannulas

ECMO cannulas often under deliver blood due to recirculation back through the cannula. With a single bolus of saline into the circuit, the ELSA Monitor detects and quantifies any recirculation in any VV circuit.

Knowing recirculation helps to:
- Identify cannula migration through high recirculation rates.
- Identify flow restrictions;
- Identify the optimal pump setting;
- Minimize over pressuring the right atrium;
- Shorten the length of ECMO runs.

The ELSA Detects Clotting

Clotting in the ECMO circuit is one of the major complications of ECMO. The challenge for the team is to limit oxygenator clotting while preventing thrombotic emboli in fragile patients.

The ELSA Monitor measures oxygenator blood volume to identify the amount of clot formation in the oxygenator. This gives the perfusionist a wider window of opportunity to perform oxygenator change-out, when necessary.

HOW THE ELSA WORKS

ELSA Flow/Dilution Sensors use ultrasonic transit-time sensors to measure delivered volume flow in fluids with the highest accuracy. When a bolus of saline is injected into the circuit, the Transonic® ELSA Monitor detects and quantifies recirculation in VV ECMO single- and dual- cannula configurations It also quantifies oxygenator clotting in VV or VA circuits.

No physical contact is made with the fluid so circuit sterility is maintained at all times.
Maximize ECMO Efficiency

The ELSA Helps Surgeons & Intensivists

The ELSA Monitor helps the surgeons and intensivists provide optimal cannula placement and ECMO delivery by the following:

- With the ELSA, the perfusionist can achieve a maximum flow setting that minimizes recirculation;
- Elevated rates of recirculation identified by the ELSA tells the intensivist that the cannula is not placed in its optimal position;
- The perfusionist has more time to change out the oxygenator when the ELSA identifies unacceptably high clot development in an ECMO oxygenator.

The ELSA Helps Patients

Using the ELSA Monitor directly helps fragile ECMO patients as ICU staff seek to save their lives with ECMO therapy:

- Catastrophic circuit failures with dire consequences can be averted because actual blood flow through the circuit is known at all times and kinks and circuit blockages can be immediately identified and corrected.
- The time that the patient has to be on ECMO is shortened when known values for flow and recirculation are used and optimal cannula placement is achieved.

The ELSA Helps Hospitals

Using the ELSA Monitor during ECMO directly helps your hospital.

- Shorter ECMO runs translate into cost savings for your hospital;
- Better outcomes improve your hospital’s quality scores;
- Optimizing ECMO facilitates better outcomes that enhance a hospital’s reputation for delivering the highest quality care with state-of-the-art instrumentation and performance of best practices;
- Averting catastrophic circuit failures safeguards your hospital’s ELSA program.
Annotated References

Krivitski N, Galyanov G, Cooper D, Said MM, Rivera O, Mikesell GT, Rais-Bahrami K, “In vitro and in vivo assessment of oxygenator blood volume for the prediction of clot formation in an ECMO circuit (theory and validation),” Perfusion 2018; 33(IS): 51-56. (Transonic Reference # ELS11317) "Dilution technology has the ability to accurately and reproducibly assess the clotting process in the oxygenator."

Palmér O, Palmér K, Hultman J, Broman M, “Cannula Design and Recirculation During Venovenous Extracorporeal Membrane Oxygenation,” ASAIO J. 2016; 62(6): 737-742. (Transonic Reference # EC11034AH) "By utilizing the ultrasound dilution technique to measure Rf before and after repositioning, effective ECMO flow can be improved for a more effective ECMO treatment."

Körver EP, Ganushchak YM, Simons AP, Donker DW, Maessen JG, Weerwind PW, “Quantification of recirculation as an adjuvant to transthoracic echocardiography for optimization of dual-lumen extracorporeal life support,” Intensive Care Med. 2012 38(5): 906-909. (Transonic Reference # ELS9679AH) “We present an ultrasound dilution technique allowing quantification of recirculation for optimizing vv-ELS. ...Conclusion: We suggest quantification of recirculation in addition to image guidance to provide optimal vv-ELS.”


Walker JL, Gelfond J, Zarzabal LA, Darling E, “Calculating mixed venous saturation during veno-venous extracorporeal membrane oxygenation,” Perfusion. 2009; 24(5): 333-9. (Transonic Reference # 7904A) Recirculation (R), the shunting of arterial blood back into to the venous lumen, commonly occurs during veno-venous extracorporeal membrane oxygenation (VV-ECMO) and renders the monitoring of the venous line oxygen saturation no longer reflective of patient mixed venous oxygen saturation (S(V)O(2)).


Darling EM, Crowell T, Searles BE, “Use of dilutional ultrasound monitoring to detect changes in recirculation during venovenous extracorporeal membrane oxygenation in swine,” ASAIO J 2006; 52(5): 522-4. (Transonic Reference # 7309A) "Dilutional ultrasound provides a clinically practical method to quantify and monitor recirculation in VV ECMO applications and may aid in assessing interventions to improve oxygen delivery."

van Heijst AF, van der Staak FH, de Haan AF, Liem KD, Festen C, Geven WB, van de Bor M, “Recirculation in double lumen catheter veno-venous extracorporeal membrane oxygenation measured by an ultrasound dilution technique,” ASAIO J, 2001; 47(4): 372-6. (Transonic Reference # HD49V) "The ultrasound dilution method is a useful method for measurement of the recirculation fraction in DLVV-ECMO and is easier to use than the other methods.”

Transonic Systems Inc. is a global manufacturer of innovative biomedical measurement equipment. Founded in 1983, Transonic sells “gold standard” transit-time ultrasound flowmeters and monitors for surgical, hemodialysis, pediatric critical care, perfusion, interventional radiology and research applications. In addition, Transonic provides pressure and pressure volume systems, laser Doppler flowmeters and telemetry systems.